The impact of thymoglobulin prior to paediatric unrelated umbilical cord blood transplantation on immune-reconstitution and clinical outcome

Robert Chiesa
Specialty Doctor, BMT Department
Great Ormond Street Hospital, London
• **Delayed T-cell recovery** & skewed TCR repertoire \((Komanduri et al, Blood 2007)\);

• **CD4+ T-cell recovery** after 12 months post UCBT \((Eurocord analysis, Nieheus et al. BJH 2001)\) and dependent on return of thymopoiesis;

• Lack of transfer of **antigen-experienced** lymphocytes;

• **Deficient cytokine production** \((Lewis et al, J.Clin.Inv 1991)\);

• **High early infection-related mortality** \((Delaney et al, BJH 2009)\) → up to 50% **TRM** \((Rubinstein et al, NEJM 1998)\).
Role of *in vivo* T-cell depletion

- Prolonged *in vivo* purging of donor T-cells might contribute to delayed immune reconstitution (more infections / loss of GvL);

- ATG or Alemtuzumab are commonly used to reduce the risk of GvHD post HCT;

- ATG or Alemtuzumab can be detected for weeks after HCT (*Waller et al, 2003; Call et al, 2009; Chakraverty et al, 2010*);

- Differences in dose/timing of ATG or Alemtuzumab might impact on outcome after HCT.
Poor immune reconstitution/infections

GVHD

ATG

No ATG
IMPACT OF rATG prior to UCBT

Retrospective analysis of clinical outcome and immune reconstitution in children undergoing 127 UCBT in London and Utrecht.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n= 33 (Utrecht)</td>
<td>n= 48 (Utrecht)</td>
<td>n= 46 (London)</td>
</tr>
</tbody>
</table>

EARLY rATG

<table>
<thead>
<tr>
<th></th>
<th>D-8</th>
<th>D-7</th>
<th>D-6</th>
<th>D-5</th>
<th>D-4</th>
<th>D-3</th>
<th>D-2</th>
<th>D-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATG</td>
<td>ATG</td>
<td>ATG</td>
<td>ATG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LATE rATG

<table>
<thead>
<tr>
<th></th>
<th>D-8</th>
<th>D-7</th>
<th>D-6</th>
<th>D-5</th>
<th>D-4</th>
<th>D-3</th>
<th>D-2</th>
<th>D-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATG</td>
<td>ATG</td>
<td>ATG</td>
<td>ATG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NO ATG

<table>
<thead>
<tr>
<th></th>
<th>D-8</th>
<th>D-7</th>
<th>D-6</th>
<th>D-5</th>
<th>D-4</th>
<th>D-3</th>
<th>D-2</th>
<th>D-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>PATIENTS’ CHARACTERISTICS</td>
<td>NO ATG (n= 46)</td>
<td>EARLY ATG (n= 33)</td>
<td>LATE ATG (n= 48)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune deficiencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.I.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years) median (range)</td>
<td>1.8 (0.1-12.2)</td>
<td>5.5 (0.1-22.7)</td>
<td>2.3 (0.2-21.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYELOABL. conditioning</td>
<td>29</td>
<td>31</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REDUCED INT. conditioning</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO conditioning</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNC (x 10^7/kg)</td>
<td>8.1</td>
<td>5.8</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD34+ (x 10^5/kg)</td>
<td>3.4</td>
<td>1.4</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/6 HLA matched</td>
<td>18</td>
<td>18</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/6 HLA mismatched</td>
<td>25</td>
<td>13</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/6 HLA mismatched</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NEUTROPHIL / PLT ENGRAFTMENT

NEUTROPHIL RECOVERY

PLATELET RECOVERY

Log rank
NONE-EARLY p = 0.029
EARLY-LATE p = 0.19 (NS)
NON-ENGRAFTMENT / REJECTION

NON ENGRAFTMENT

REJECTION

One Minus Cum Survival

Time_EFS

11% +/- 4%
5% +/- 3%
3% +/- 2%

11% +/- 4%
3% +/- 2%
CD3+ T-cells @ 1 month post UCBT
CD4+ T-cells @ 2 months post UCBT

- NO ATG
- EARLY ATG
- LATE ATG

p < 0.001
p = 0.006
EARLY CD4+ T-CELL EXPANSION WITH NO ATG
median CD4+T-cell / TRECs count after UCBT (n=33)

Chiesa et al, 2012
CD4+ T-CELL RECOVERY

median CD4+ T-cells after UCBT

MONTHS POST UCBT

CD4+ T-cell counts

- none
- early serotheraphy
- late serotheraphy
B and NK cell RECOVERY post UCBT

B cells

NK cells

months post SCT

none
early ATG
late ATG
VIRAL REACTIVATIONS AFTER UCBT
(CMV, AdV, EBV)

p = 0.022
EARLY FUNCTIONAL T-CELL RESPONSES WITH NO ATG
@ 2-4 months post UCBT (n=16)

PHA / ELISPOT

INFγ ELISPOT

- CD4+ T-cells
- CD8+ T-cells

Spot forming cells (x 10^5 cells)

- PHA
- CMV
- ADENOVIRUS

- Related peptide
- Unrelated peptide
- Hexon
Post UCBT MORTALITY

Non relapse mortality

23% +/- 8%
22% +/- 6%
13% +/- 6%

Relapse mortality

18% +/- 7%
9% +/- 6%
CAUSES of DEATH post UCBT

<table>
<thead>
<tr>
<th>Cause</th>
<th>NO ATG n= 11/46</th>
<th>EARLY ATG n= 10/33</th>
<th>LATE ATG n= 18/48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukaemia relapse</td>
<td>6/21 (28%)</td>
<td>2/13 (15%)</td>
<td>7/16 (43%)</td>
</tr>
<tr>
<td>Infection</td>
<td>2 (1 PH)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Idiopathic pneumonia</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cardiac arrest / toxicity</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GvHD</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>M.O.F.</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Leukoencephalopathy</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
acute GvHD

GvHD II-IV

Log rank
none-early: p = 0.002
early-late: p = 0.003
none-late: p < 0.001

61% +/- 9%
43% +/- 9%
17% +/- 5%

GvHD III-IV

Log rank
none-early: p < 0.001
early-late: NS p = 0.14

31% +/- 9%
16% +/- 8%
5% +/- 3%

Time_to_aGvHD (days)

One Minus Cum Survival
chronic GvHD

Log rank
none - early: NS (p=0.054)
none - late: NS (p=0.19)
SURVIVAL

Log rank NS

71% +/- 8%
71% +/- 8%
65% +/- 7%
Conclusions (1)

• Omission of *in vivo* T-cell depletion in UCBT leads to significantly quicker CD4+T-cell reconstitution up to 6 months post UCBT;

• This leads to reduced viral reactivations;

• However this is associated with increased aGVHD (not chronic);

• No difference in survival.
Conclusions (2)

• Early rATG has a better immune reconstitution in the first 2 months post UCBT compared to late;

• This is associated with more aGVHD, however with similar rates of severe (gr III-IV) aGVHD.
Discussion

- **NO ATG** may be the best option for patients with ID +/- active viral infections and malignancies;

- **Tailor made ATG dosing** (early pre UCBT) may be the best option for:
 - Immunodeficiency with inflammation (HLH)
 - Metabolic diseases
 - SAA
 - Hemoglobinopathies
Acknowledgements

GOSH
BMT/Immunology

Paul Veys
Persis J Amrolia
Stuart Adams
Nick Goulden
Kanchan Rao
Olga Nikolajeva
Juliana Silva
Prashant Hiwarkar
Kimberley Gilmour
Waseem Qasim
Cathy Cale
Bobby Gaspar
Graham Davies
Austen Worth
Alison Jones
Adrian Thrasher
Amel Hassan
Siobhan Burns

UTRECHT
BMT/Immunology

Caroline Lindemans
Jaap Boelens
Marc Bierings
Birgitta Versluys
Arianne de Wildt
Corinne Gerhardt
NON-INFECTIONOUS LUNG INJURY

Log rank NS

24% +/- 6%

18% +/- 7%

Log rank NS
T-CELL RECOVERY

median CD3+/CD4+/CD8+ T cells after UCBT

LYMPHOCYTE COUNT (X 10⁹/L)

1 month n= 39
2 months n= 39
3 months n= 36
6 months n= 32
12 months n= 27

median CD4+ cells @ 1 and 2 m post SCT: 250 and 550 x 10⁶/L (range 60-1890)
Median time to normal NK counts: 1 month (range, 1-3)
Median time to normal B-cells: 2 months (range, 1-12)
IMMUNE RECONSTITUTION AFTER UCBT

63 children studied: CD4+ cell recovery @ 12 months post SCT
CD8+ cell recovery @ 8 months post SCT
NK cell recovery @ 3 months post SCT
CD19+ cell recovery @ 6 months post SCT

Eurocord analysis. Nieheus et al. BJH 2001

12 children studied: 4/12 with CD4+ count \(\geq 0.2 \times 10^9/L \) @ 2 months

27 patients studied: median CD4+ count @ 2 months: 0.15 \(\times 10^9/L \)

Thomson et al. Blood 2000
SHIFT CD4+ NAÏVE > MEMORY CELLS

% OF TOTAL CD4+ T-CELL COUNT

months post UCBT

naive
central memory
effector memory
Mold et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 2010
Spectratype @ 1 and 2 months post CBT (pt LS)

<table>
<thead>
<tr>
<th>Vβ1</th>
<th>Vβ2</th>
<th>Vβ3</th>
<th>Vβ4</th>
<th>Vβ5</th>
<th>Vβ6A</th>
<th>Vβ6B</th>
<th>Vβ7</th>
<th>Vβ8</th>
<th>Vβ9</th>
<th>Vβ11</th>
<th>Vβ12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vβ13A</th>
<th>Vβ13B</th>
<th>Vβ14</th>
<th>Vβ15</th>
<th>Vβ16</th>
<th>Vβ17</th>
<th>Vβ18</th>
<th>Vβ20</th>
<th>Vβ21</th>
<th>Vβ22</th>
<th>Vβ23</th>
<th>Vβ24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vβ13A</th>
<th>Vβ13B</th>
<th>Vβ14</th>
<th>Vβ15</th>
<th>Vβ16</th>
<th>Vβ17</th>
<th>Vβ18</th>
<th>Vβ20</th>
<th>Vβ21</th>
<th>Vβ22</th>
<th>Vβ23</th>
<th>Vβ24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spectratype post UCBT (Dkl score)
n=20
Regulatory T-cells

- Not possible to analyse T-regs by conventional intracellular staining of FOXp3;

- **Surrogate marker:** CD4+ CD25+ CD127dim;

- @1 and 2 months post UCBT: 7.4% and 8.1% CD4+ cells express CD4+CD25+CD127dim phenotype;

- Measurement of FOXp3 mRNA in PB within 3 months post UCBT showed levels between 5-1422% (median 37%) of expression levels found in healthy children;

Data suggestive of EARLY Treg RECOVERY
CONCLUSIONS
UCBT with no *in vivo* T cell depletion

- rapid peripheral expansion of CB CD4+ T-cells;
- rapid shift from naïve > memory;
- reduced virus-related morbidity;
- early detectable virus specific CTLs;
- Higher steroid responsive aGvHD;
- good engraftment rate/donor chimerism;
- Poor outcome in “*inflammatory diseases*” (HLH)
REGIMEN RELATED TOXICITY

<table>
<thead>
<tr>
<th>Condition</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram POS sepsis (Strept. viridans)</td>
<td>9/46</td>
</tr>
<tr>
<td>Adenoviraemia</td>
<td>6/46</td>
</tr>
<tr>
<td>CMV viraemia</td>
<td>5/46</td>
</tr>
<tr>
<td>HHV6 encephalitis</td>
<td>1/46</td>
</tr>
<tr>
<td>RSV/Paraflu3/Rhinovirus URTI</td>
<td>8/46</td>
</tr>
<tr>
<td>Candida osteomyelitis</td>
<td>1/46</td>
</tr>
<tr>
<td>Aspergillosis</td>
<td>1/46</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>2/46</td>
</tr>
<tr>
<td>Lung injury</td>
<td>1/46</td>
</tr>
</tbody>
</table>

Updated from Chiesa et al. BJH 2012